Predictive SIRT dosimetry based on a territorial model
نویسندگان
چکیده
BACKGROUND In the planning of selective internal radiation therapy (SIRT) for liver cancer treatment, one major aspect is to determine the prescribed activity and to estimate the resulting absorbed dose inside normal liver and tumor tissue. An optimized partition model for SIRT dosimetry based on arterial liver territories is proposed. This model is dedicated to characterize the variability of dose within the whole liver. For an arbitrary partition, the generalized absorbed dose is derived from the classical partition model. This enables to consider normal liver partitions for each arterial perfusion supply area and one partition for each tumor for activity and dose calculation. The proposed method excludes a margin of 11 mm emitting range around tumor volumes from normal liver to investigate the impact on activity calculation. Activity and dose calculation was performed for five patients using the body-surface-area (BSA) method, the classical and territorial partition model. RESULTS The territorial model reaches smaller normal liver doses and significant higher tumor doses compared to the classical partition model. The exclusion of a small region around tumors has a significant impact on mean liver dose. Determined tumor activities for the proposed method are higher in all patients when limited by normal liver dose. Activity calculation based on BSA achieves in all cases the lowest amount. CONCLUSIONS The territorial model provides a more local and patient-individual dose distribution in normal liver taking into account arterial supply areas. This proposed arterial liver territory-based partition model may be used for SPECT-independent activity calculation and dose prediction under the condition of an artery-based simulation for particle distribution.
منابع مشابه
Changing Therapeutic Paradigms: Predicting mCRC Lesion Response to Selective Internal Radionuclide Therapy (SIRT) based on Critical Absorbed Dose Thresholds: A Case Study
A 65 year old male with metastatic colorectal cancer (mCRC) in the liver was referred for selective internal radionuclide therapy (SIRT) following a history of extensive systemic chemotherapy. 90Y PET imaging was performed immediately after treatment and used to confirm lesion targeting and measure individual lesion absorbed doses. Lesion dosimetry was highly predictive of eventual response in ...
متن کاملChanging Therapeutic Paradigms: Predicting mCRC Lesion Response to Selective Internal Radionuclide Therapy (SIRT) based on Critical Absorbed Dose Thresholds: A Case Study
A 65 year old male with metastatic colorectal cancer (mCRC) in the liver was referred for selective internal radionuclide therapy (SIRT) following a history of extensive systemic chemotherapy. 90Y PET imaging was performed immediately after treatment and used to confirm lesion targeting and measure individual lesion absorbed doses. Lesion dosimetry was highly predictive of eventual response in ...
متن کاملPatient dosimetry for 90Y selective internal radiation treatment based on 90Y PET imaging
Until recently, the radiation dose to patients undergoing the 90Y selective internal radiation treatment (SIRT) procedure is determined by applying the partition model to 99mTc MAA pretreatment scan. There can be great uncertainty in radiation dose calculated from this approach and we presented a method to compute the 3D dose distributions resulting from 90Y SIRT based on 90Y positron emission ...
متن کاملCombined Yttrium-90 microsphere selective internal radiation therapy and external beam radiotherapy in patients with hepatocellular carcinoma: From clinical aspects to dosimetry
PURPOSE Selective internal radiation therapy (SIRT) is an effective treatment strategy for unresectable hepatocellular carcinoma (HCC) patients. However, the prognoses of patients with portal vein thrombosis, extra-hepatic metastases, or residual tumors remain poor when treated with SIRT alone. In these patients, sequential external beam radiotherapy (EBRT) may offer a chance of salvage. Here, ...
متن کاملAbdo-Man: a 3D-printed anthropomorphic phantom for validating quantitative SIRT
BACKGROUND The use of selective internal radiation therapy (SIRT) is rapidly increasing, and the need for quantification and dosimetry is becoming more widespread to facilitate treatment planning and verification. The aim of this project was to develop an anthropomorphic phantom that can be used as a validation tool for post-SIRT imaging and its application to dosimetry. METHOD The phantom de...
متن کامل